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ABSTRACT

The extremely robust and water-stable tetranuclear complex Ti 4(µ-BINOLato) 6(µ3-OH)4 was found to catalyze the direct aldol addition with high
regioselectivities at the more steric r-encumbered side of unsymmetrical ketones. As few as 0.2 mol % loadings with this cluster were enough
to afford complete conversions. The reaction proceeds very smoothly without a significant amount of byproducts. The formation of quaternary
stereocenters is described.

The aldol addition1 is one of the most powerful methods for
the formation of carbon-carbon bonds.2 Especially since the
mid-1990s, various methods for direct aldol additions have
been developed.3 Many of them are catalyzed by various
kinds of metal complexes.4 However, most of these catalysts,

especially Lewis acid catalysts, are sensitive to air and/or
moisture, making extended expenditures in handling neces-
sary. On the other hand, quenching the reactions with water
often causes the decomposition of the moisture-sensitive
catalysts, and the decomposition products, such as BINOL,
for example, make the purification of the reaction products
more difficult. The recovery of the catalyst is in these cases
impossible as well. Other catalysts are produced in situ,
making reproducible reaction conditions difficult, as well as
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mechanistic studies.5 Last but not least, many catalysts are
only accessible by complicated multistep reaction sequences
or need rare and expensive metals as reactive centers.6 Recent
research is focused on the development of stable and storable
catalysts, and the first remarkable results have been presented
by Kobayashi et al.,7 who presented stable rare-earth and
zirconium catalysts for Mannich, aza-Diels-Alder, and
Mukaiyama aldol reactions, and Bull et al., who described a
moisture-stable titanium triflate for aza-Diels-Alder reac-
tions.8

During our ongoing studies of the mechanisms of titanium-
(IV)-alkoxide-mediated direct aldol additions, we explored
the catalytic potental of Mikami’s tetranuclear titanium
cluster.9 Mikami’s catalyst is crystalline and stable even
against boiling 1 N HCl and 1 N LiOH in dioxane and easy
to synthesize from Ti(OiPr)4, R-BINOL, or S-BINOL and
water.6 We also synthesized this cluster withrac-BINOL10

and found that all six BINOL molecules which are incor-
porated in each cluster have the same stereochemistry. No
clusters appeared in crystalline form with a mixed stereo-
chemistry of the incorporated BINOLs. Therefore, the
clusters obtained fromrac-BINOL are identical to those
produced withR-BINOL or S-BINOL (Figure 1).

To test the applicability of this titanium complex, we
reacted several aldehydes with symmetrical and unsym-
metrical ketones. In fact, the catalyst was able to promote
the direct aldol addition between aldehydes1 and ketones2
in a remarkably clean way even with very low catalyst
loadings11 to give the aldols3 (Table 1).12 This reaction was
found to be highly regioselective. Aldol addition is strongly
preferred at the sterically more encumberedR-side of the

ketone.13 In many cases, only one regioisomer was obtained.
Methyl groups of alkan-2-ones were found to be unaffected
under these reaction conditions. Therefore, the Wieland-
Miescher ketone4 avoids the typically aldol cyclization to
the CD bicyclic steroidal intermediate6 (Scheme 1).14 The

bicyclic dione5 is formed and strongly preferred with a high
degree of diastereoselectivity (>95:5). Dione5 posseses two
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Figure 1. Crystal structure of the tetranuclear titanium complex
rac-Ti4(µ-BINOLato)6(µ3-OH)4; hydrogen atoms are omitted for
clarity.

Scheme 1. Regioselective Formation of Diketone5

282 Org. Lett., Vol. 8, No. 2, 2006



quaternary stereocenters with defined relative configurations
(endo-CH3 andexo-OH, Figure 2).15

Other quaternary carbon atoms were also synthesized with
R-methylcyclopentanone7aandR-methylcyclohexanone7b
(Table 2). Surprisingly, the regioselectivity depends strongly
upon the nature of the cyclic ketone in these reactions.

Because Mikami’s catalyst is highly resistant against air,
moisture, and acids, neither drying of the reagents and the
solvents nor the application of protection gas techniques was
necessary. Although the reaction stopped after adding 1 equiv
of water, the aldol reaction proceeded after water removal
(molsieve A3 after separation of the aqueous layer), indicat-
ing that the catalyst remained stable and active. It was even
possible to recover unchanged catalyst from the reaction
mixture.

Optimization of the reaction conditions indicated that
reaction temperatures of 55°C reduce the reaction times to
48 h (entry 2a, Table 1). If the reaction was carried out at
63 °C, satisfactory yields were obtained after 12 h (entry
2b, Table 1). Higher amounts of the aldehyde and higher
catalyst loadings also resulted in a reduction of reaction time.

In contrast to the TiCl4-mediated aldol addition,13 this
reaction is even applicable to higher functionalized ene
compounds. Hydroxyacetone10 reacts with aldehydes to give
the protected aldols11 and12 (Table 3) with a high degree
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Table 1

a Regioselectivity was generally below the detection limit of 300 MHz1H NMR (>95:5). b 70% of the thiophenecarbaldehyde was recovered.c 75% of
the benzaldehyde was recovered.d 40% of the phenylpropargylaldehyde was recovered.

Figure 2. Crystal structure of the bicyclic dione5.
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of diastereoselectivity. In these cases, only one regioisomer
was detected as well.

The outcome of this reaction is tunable by the stoichiom-
etry of the reactants. By employing equimolar amounts of
aldehyde1 and hydroxyacetone10, we obtained the anti-
configured aldol adduct12 (a hydroxyacetone acetal) as the
main product, whereas a 5-fold excess of the aldehyde1
resulted in the syn-configured aldol11 (an aldehyde acetal).

Additional experiments concerning the concept of chiral
amplification and chiral poisoning16 of the racemic catalyst
are ongoing. Recently, other multinuclear chiral titanium
clusters (e.g., a hexanuclear cluster with a chiral reactive
cave) have been synthesized in our laboratories, and the
catalytic properties will be explored.

In summary, herein, we demonstrate for the first time the
synthetic power of stable and storable titanium clusters for
the direct aldol addition, which is promoted with extremely

low catalyst loadings. The complimentary regioselectivity
is remarkable compared with the proline-catalyzed direct
aldol additions and the regioselective MgI2-amine-promoted
direct aldol addition.17 With aliphatic aldehydes, aldols could
be obtained as well under certain reaction conditions.
Because the outcome of this reaction is sensitive to the
reaction conditions and other reaction products could be
obtained in high yields as well under application of other
reaction conditions, these results will be reported in a separate
forthcoming paper.
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Table 2. Aldol Additions to R-Methylcycloalkanones

entry ketone R1
regioselectivity

8:9
syn-8:
anti-8

syn-9:
anti-9

overall
yield
(%)

1 7a Ph >95:5a 52:48 85
2 7b Ph 66:34 55:45 72:28 53d

3 7a PhCtC 94:6 51:49 81
4 7b PhCtC 78:22 52:48 70:30 72
5 7a 4-EtO-C6H4 >95:5a 65:35 61c

6 7b 4-EtO-C6H4 no reaction
7 7a 4-Cl-C6H4 96:4 55:45 ndb 68
8 7b 4-Cl-C6H4 81:19 65:35 67:33 34
9 7a 3-MeO-C6H4 96:4 67:33 ndb 68

10 7b 3-MeO-C6H4 75:25 63:37 65:35 12e

a Regioselectivity was generally below the detection limit of 300 MHz
1H NMR (>95:5). b Not determined.c 28% of the aldehyde was recovered.
d 38% of the aldehyde was recovered.e 78% of the aldehyde was recovered.
f Relative stereochemistry determined by X-ray structure determination.

Table 3. Aldol Additions to Hydroxyacetone

entry R
ratio
1:10

yield 11
(%)

syn-11:
anti-11

yield 12
(%)

syn-12:
anti-12

1 Ph 1:1 22 86:14 63 13:87
2 Ph 5:1 88 65:35
3 PhCtC 1:1 trace 61 20:80
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